Synthesis and application of atropisomeric dihydrobenzofuran-based bisphosphine (BICMAP)

Takashi Mino*, Yoshiaki Naruse, Shohei Kobayashi, Shunsuke Oishi, Masami Sakamoto, Tsutomu Fujita
Department of Applied Chemistry and Biotechnology, Graduate School of Engineering, Chiba University, 1-33, Yayoi-cho, Inage-ku, Chiba 263-8522, Japan

A R T I C L E I N F O

Article history:

Received 23 January 2009
Revised 23 February 2009
Accepted 24 February 2009
Available online 27 February 2009

Abstract

A new atropisomeric dihydrobenzofuran-based bisphosphine ligand $\mathbf{1}$ was easily prepared from 1,4-dibromo-2-fluorobenzene. This racemic bisphosphine (\pm)- $\mathbf{1}$ was used as a ligand for the palladium-catalyzed Suzuki-Miyaura reaction of aryl chloride with arylboronic acids and Hartwig-Buchwald amination of aryl bromides with aniline derivatives. The optical resolution of (\pm)-1 was also carried out by HPLC with a chiral stationary phase column.

© 2009 Elsevier Ltd. All rights reserved.

Chiral phosphines are important molecules that affect asymmetric inductions as ligands for transition metal catalysts. ${ }^{1}$ Atropisomeric biaryls are also well established as one important class of ligands for asymmetric metal-catalyzed reactions by the discovery and the application of BINAP. ${ }^{2}$ Recently many new chiral biarylphosphines have been reported, such as MeO-BIPHEP, ${ }^{3}$ BIBFUP, ${ }^{4}$ BIFAP, ${ }^{5}$ BICAP, ${ }^{6}$ SEGPHOS, ${ }^{7}$ and SYNPHOS. ${ }^{8}$ We herein report the synthesis of a new atropisomeric bisphosphine ligand bearing a dihydrobenzofuran (coumaran) core, hereafter named BICMAP $((\pm)-\mathbf{1})$, and its use in the palladium-catalyzed Suzuki-Miyaura reaction ${ }^{9}$ and Hartwig-Buchwald amination. ${ }^{10,11}$ The optical resolution of (\pm)-1 was also carried out by use of HPLC with a chiral stationary phase column.

Dihydrobenzofuran-based bisphosphine ligand 1 was easily prepared from inexpensive reagent 1,4-dibromo-2-fluorobenzene (2) ($\sim \$ 1 / \mathrm{g})^{12}$ via 6-diphenylphosphino-2,3-dihydrobenzofuran (5) (Scheme 1). A nucleophilic aromatic substitution ($\mathrm{S}_{\mathrm{N}} \mathrm{Ar}$) reaction of 1,4-dibromo-2-fluorobenzene (2) and ethylene glycol with potassium tert-butoxide gave corresponding alcohol $\mathbf{3}^{13}$ that was converted into bromide 4 using $\mathrm{CBr}_{4}-\mathrm{PPh}_{3}$ in good yield. ${ }^{14}$ 6-Diphenylphosphino-2,3-dihydrobenzofuran (5) was prepared by intramolecular alkylation and phosphination with chlorodiphenylphosphine via double lithium-bromide exchange of 4 with two equivalents of n-butyllithium. ${ }^{15}$ After oxidation of the phosphine atom by hydrogen peroxide in chloroform, ortholithiation of phosphine oxides $\mathbf{6}^{16}$ and further oxidative coupling with anhydrous ferric chloride furnished bisphosphine oxide (\pm)-7 in good yield. ${ }^{17}$ This bisphosphine oxide (\pm)-7 was converted into racemic bisphosphine ligand (\pm)- $\mathbf{1}$ using trichlorosilane-triethylamine in good yield. ${ }^{18}$ We successfully conducted single-crystal X-ray diffraction analysis of $(\pm)-\mathbf{1}$, and the ORTEP diagram of $(\pm)-\mathbf{1}$ is

[^0]shown in Figure 1. The optical resolution of (\pm)- $\mathbf{1}$ was efficiently carried out by HPLC with a chiral stationary phase column (Chir-

Scheme 1. Preparation of diphosphine ligand 1.

Figure 1. ORTEP diagram of (\pm)-1.
alpak IA) of a semi-preparative scale. Optically active (+)-1 and (-)-1 were obtained in an enantiomerically pure form. ${ }^{19}$

We investigated the ability of bisphosphine (\pm)- $\mathbf{1}$ as a ligand for the palladium-catalyzed Suzuki-Miyaura reaction of aryl chlorides 8 with arylboronic acids 9 . This reaction was carried out in the presence of $2.5 \mathrm{~mol} \%$ of $\mathrm{Pd}_{2} \mathrm{dba}_{3}, 7.5 \mathrm{~mol} \%$ of $(\pm)-\mathbf{1}$, and CsCO_{3} as a base in dioxane (Table 1). ${ }^{20}$ When the reaction was carried out using 1-chloro-4-nitrobenzene with phenylboronic acid, 4-nitrobiphenyl (10a) was obtained in good yield (Table 1, entry 1). The effect of various aryl chlorides and arylboronic acids in the SuzukiMiyaura reaction was investigated (Table 2, entries 2-5). The reaction gave corresponding products 10b-e in moderate to good yields.

We also investigated the ability of bisphosphine (\pm)- $\mathbf{1}$ as a ligand for the palladium-catalyzed Hartwig-Buchwald amination of aryl bromides 11 with aniline derivatives $\mathbf{1 2}$. This reaction was carried out in the presence of $1 \mathrm{~mol} \%$ of $\mathrm{Pd}_{2} \mathrm{dba}_{3}, 2 \mathrm{~mol} \%$ of (\pm)1, and CsCO_{3} as a base in PhMe (Table 2). ${ }^{21}$ The reaction of various aryl bromides and aniline derivatives gave corresponding products 13a-d with good yields. When (\pm)-BINAP was used instead of (\pm)-1 as a ligand, the yield of 13a was slightly decreased (Table 2, entry1 vs entry 2).

To investigate the nature of the catalyst structure of palladium complex with (\pm)-1, a single-crystal of palladium complex $\mathbf{1 4}$ was obtained from the reaction of $(\pm)-\mathbf{1}$ and $\mathrm{PdCl}_{2}(\mathrm{MeCN})_{2} .2$ The

Table 1
Palladium-catalyzed Suzuki-Miyaura reaction using (\pm)-1 $\mathbf{1}^{\text {a }}$

Entry	R^{1}	R^{2}	Reaction time (h)	Product	Yield $^{\mathrm{b}}(\%)$
1	NO_{2}	H	24	$\mathbf{1 0 a}$	91
2	NO_{2}	OMe	24	$\mathbf{1 0 b}$	88
3	Ac	H	24	$\mathbf{1 0 c}$	59
4	Ac	OMe	48	$\mathbf{1 0 d}$	80
5	CN	OMe	48	$\mathbf{1 0 e}$	94

[^1]Table 2
Palladium-catalyzed Hartwig-Buchwald amination using (\pm)-1 $\mathbf{1}^{\text {a }}$

Entry	R^{1}	R^{2}	Product	Yield ${ }^{\mathrm{b}}$ (\%)
1	NO_{2}	Me	$\mathbf{1 3 a}$	98
2^{c}	NO_{2}	Me	$\mathbf{1 3 b}$	93
3	Ac	Me	$\mathbf{1 3 c}$	93
4	CN	Me	$\mathbf{1 3 d}$	92
5	NO_{2}	OMe	$\mathbf{1 3 e}$	91

${ }^{\text {a }}$ The reactions were carried out on 0.25 mmol scale of $\mathbf{1 1}$ with 1.2 equiv of $\mathbf{1 2}$ and 1.4 equiv of $\mathrm{Cs}_{2} \mathrm{CO}_{3}$ in the presence of $\mathrm{Pd}_{2}(\mathrm{dba})_{3}(1 \mathrm{~mol} \%)$ and ligand $(\pm)-\mathbf{1}$ $(3 \mathrm{~mol} \%)$ in $\mathrm{PhMe}(1.0 \mathrm{~mL})$ at $100^{\circ} \mathrm{C}$ for 18 h under Ar .
${ }^{\mathrm{b}}$ Isolated yields.
${ }^{\text {c }}$ This reaction was carried out using (\pm)-BINAP instead of (\pm)-1.

Figure 2. ORTEP diagram of palladium complex 14 (one molecule of chloroform omitted for clarity).

X-ray analysis of $\mathbf{1 4}$ showed that the two phosphine atoms are coordinated to palladium (Fig. 2), the bite angle of $\mathrm{P}-\mathrm{Pd}-\mathrm{P}$ is 92.5°, and the dihedral angle of the biaryl atropisomeric backbone is 62.5°. This dihedral angle is significantly narrower than that of BINAP-PdCl 2 complex (70.2°). ${ }^{23}$

In summary, a new atropisomeric dihydrobenzofuran-based bisphosphine ligand (\pm)-1 was prepared, and the resolution of these isomers was achieved using HPLC with a chiral stationary phase column. We described the use of an efficient ligand for the palladium-catalyzed Suzuki-Miyaura reaction and Hartwig-Buchwald amination. Further studies to explore the scope of chiral ligand $\mathbf{1}$ in asymmetric catalytic reactions are currently underway.

References and notes

1. (a)Catalytic Asymmetric Synthesis; Ojima, I., Ed.; VCH: New York, 2000; (b)Comprehensive Asymmetric Catalysis; Jacobsen, E. N., Pfaltz, A., Yamamoto, H., Eds.; Springer: New York, 1999; (c) Noyori, R. Asymmetric Catalysis in Organic Synthesis; John Wiley \& Sons: New York, 1994.
2. (a) Takaya, H.; Akutagawa, S.; Noyori, R. Org. Synth. 1989, 67, 20; (b) Takaya, H.; Mashima, K.; Koyano, K.; Yagi, M.; Kumobayashi, H.; Taketomi, T.; Akutagawa, S.; Noyori, R. J. Org. Chem. 1986, 51, 629; (c) Miyashita, A.; Yasuda, A.; Takaya, H.; Toriumi, K.; Ito, T.; Souchi, T.; Noyori, R. J. Am. Chem. Soc. 1980, 102, 7932.
3. (a) Schmid, R.; Cereghetti, M.; Heiser, B.; Schönholzer, P.; Hansen, H.-J. Helv. Chim. Acta 1988, 71, 897; (b) Schmid, R.; Foricher, J.; Cereghetti, M.; Schönholzer, P. Helv. Chim. Acta 1991, 74, 370; (c) Schmid, R.; Broger, E. A.; Cereghetti, M.; Crameri, Y.; Foricher, J.; Lalonde, M.; Müller, R. K.; Scalone, M.; Schoettel, G.; Zutter, U. Pure Appl. Chem. 1996, 68, 131.
4. (a) Laue, C.; Schroeder, G.; Arlt, D.; Grosser, R. (Bayer AG), EP643.065, 1995; Chem. Abstr. 1995, 123, 112406b.; (b) Namyslo, J. C.; Kaufmann, D. E. Chem. Ber. 1997, 1327.
5. Sollewijn Gelpke, A. E.; Kooijman, H.; Spek, A. L.; Hiemstra, H. Chem. Eur. J. 1999, 2472.
6. Botman, P. N. M.; Fraanje, J.; Goubitz, K.; Peschar, R.; Verhoeven, J. W.; van Maarseveen, J. H.; Hiemstra, H. Adv. Synth. Catal. 2004, 346, 743.
7. (a) Saito, T.; Sayo, N.; Xiaoyaong, Z.; Yokozawa, T. (Takasago International Corporation), EP 0850945, 1998.; (b) Saito, T.; Yokozawa, T.; Ishizaki, T.; Moroi, T.; Sayo, N.; Miura, T.; Kumobayashi, H. Adv. Synth. Catal. 2001, 343, 264.
8. (a) Pai, C.-C.; Li, Y.-M.; Zhou, Z.-Y.; Chan, A. S. C. Tetrahedron Lett. 2002, 43, 2789; (b) Duprat de Paule, S.; Jeulin, S.; Ratovelomanana-Vidal, V.; Genêt, J.-P.; Champion, N.; Dellis, P. Tetrahedron Lett. 2003, 44, 823.
9. For reviewes, see: (a) Miyaura, N.; Suzuki, A. Chem. Rev. 1995, 95, 2457; (b) Stanforth, S. P. Tetrahedron 1998, 54, 263; (c) Suzuki, A. In Metal-Catalyzed Cross-Coupling Reactions; Diederich, F., Stang, P. J., Eds.; Wiley-VCH: Weinheim, 1998; pp 49-97; (d) Suzuki, A. J. Organomet. Chem. 1999, 576, 147; (e) LlordWilliams, P.; Giralt, E. Chem. Soc. Rev. 2001, 30, 145.
10. For reviewes, see: (a) Hartwig, J. F. Angew. Chem., Int. Ed. 1998, 37, 2046; (b) Wolfe, J. P.; Wagaw, S.; Marcoux, J.-F.; Buchwald, S. L. Acc. Chem. Res. 1998, 31, 805; (c) Yang, B. Y.; Buchwald, S. L. J. Organomet. Chem. 1999, 576, 125.
11. Shekhar, S.; Ryberg, P.; Hartwig, J. F.; Mathew, J. S.; Blackmond, D. G.; Strieter, E. R.; Buchwald, S. L. J. Am. Chem. Soc. 2006, 128, 3584.
12. Price: $\$ 91,100 \mathrm{~g}$, Matrix Scientific Inc.
13. Song, Z. J.; Zhao, M.; Frey, L.; Li, J.; Tan, L.; Chen, C. Y.; Tscaen, D. M.; Tillyer, R.; Grabowski, E. J. J.; Volante, R.; Reider, P. J.; Kato, Y.; Okada, S.; Nemoto, T.; Sato, H.; Akao, A.; Mase, T. Org. Lett. 2001, 3, 3357.
14. Preparation of 2-bromoethoxy-1,4-dibromobenzene (4): To the mixture of $\mathbf{3}$ $(6.33 \mathrm{~g}, 21.4 \mathrm{mmol})$, triphenylphosphine $(6.18 \mathrm{~g}, 23.5 \mathrm{mmol})$ in acetonitrile $(29.4 \mathrm{~mL})$ was added carbon tetrabromide $(7.82 \mathrm{~g}, 23.5 \mathrm{mmol})$ at room temperature. After stirring for 3.5 h , the mixture was concentrated under reduced pressure. The residue was purified by silica gel chromatography (elution with n-hexane/ethyl acetate $=8 / 1$): $7.04 \mathrm{~g}, 19.6 \mathrm{mmol}, 92 \%$; white solid; mp 57-59 ${ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta: 3.68(\mathrm{t}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 4.32(\mathrm{t}, J=6.4 \mathrm{~Hz}$, $2 \mathrm{H}), 7.00-7.03(\mathrm{~m}, 2 \mathrm{H}), 7.40(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta: 28.1,69.2$, 111.4, 117.2, 121.5, 125.7, 134.4, 155.2; EI-MS m/z (rel intensity) 358 ($\mathrm{M}^{+}, 19$).
15. Preparation of 6-diphenylphosphino-2,3-dihydrobenzofuran (5): To the solution of bromide $4(0.356 \mathrm{~g}, 1.00 \mathrm{mmol})$ in THF (2 mL) was added slowly n-BuLi in hexane ($0.60 \mathrm{~mL}, 1.00 \mathrm{mmol}, 1.66 \mathrm{M}$) at $-80^{\circ} \mathrm{C}$ for 10 min under an Ar atmosphere. After the mixture was stirred for $2 \mathrm{~h}, n$-BuLi in hexane $(0.60 \mathrm{~mL}$, $1.00 \mathrm{mmol}, 1.66 \mathrm{M}$) was added slowly at $-80^{\circ} \mathrm{C}$ for 10 min again. After the mixture was stirred for 1.5 h , chlorodiphenylphosphine ($0.20 \mathrm{~mL}, 1.10 \mathrm{mmol}$) was added, and stirring was continued for 23 h at $-80^{\circ} \mathrm{C}$. The mixture was quenched with satd $\mathrm{NH}_{4} \mathrm{Cl}$ aq at $0^{\circ} \mathrm{C}$ and diluted with ethyl acetate at room temperature. The organic layer was washed with brine, dried over MgSO_{4}, and concentrated under reduced pressure. The residue was purified by silica gel chromatography (elution with n-hexane/ethyl acetate $=20 / 1$): 0.201 g , $0.66 \mathrm{mmol}, 66 \%$; white solid; $\mathrm{mp} 76-78{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta: 3.20(\mathrm{t}$, $J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 4.55(\mathrm{t}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.69(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.87(\mathrm{ddd}, J=1.3$, 7.6 and $8.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.17$ (dd, $J=0.8$ and $7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.24-7.35(\mathrm{~m}, 10 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta: 29.6,71.1,114.1(\mathrm{~d}, J=16.7 \mathrm{~Hz}), 124.9(\mathrm{~d}, J=16.7 \mathrm{~Hz}), 126.5(\mathrm{~d}$, $J=24.9 \mathrm{~Hz}$), 128.1, $128.4(\mathrm{~d}, J=7.1 \mathrm{~Hz}, \mathrm{C} \times 4), 128.6(\mathrm{~s}, \mathrm{C} \times 2), 133.6(\mathrm{~d}$, $J=19.5 \mathrm{~Hz}, \mathrm{C} \times 4), 137.0(\mathrm{~d}, J=10.8 \mathrm{~Hz}), 137.3(\mathrm{~d}, J=10.8 \mathrm{~Hz}, \mathrm{C} \times 2), 160.4(\mathrm{~d}$, $J=7.7 \mathrm{~Hz}) ;{ }^{31} \mathrm{P}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta:-4.1$; EI-MS m / z (rel intensity): 304 ($\mathrm{M}^{+}, 100$); HRMS (FAB-MS) m / z calcd for $\mathrm{C}_{20} \mathrm{H}_{17} \mathrm{OP}$ 304.1017, found 304.0995.
16. Preparation of 6-diphenylphosphinyl-2,3-dihydrobenzofuran (6): To the solution of phosphine $5(0.304 \mathrm{~g}, 1.00 \mathrm{mmol})$ in chloroform (5 mL) was added slowly 30% aqueous $\mathrm{H}_{2} \mathrm{O}_{2}(2.0 \mathrm{~mL})$ then stirred for 2 h . After this, water was added to the mixture and the organic layer was separated. The organic layer was dried over MgSO_{4}, and concentrated under reduced pressure. The residue was purified by silica gel chromatography (elution with n-hexane/ethyl acetate $=1 /$ 3): $0.317 \mathrm{~g}, 0.99 \mathrm{mmol}, 99 \%$; white solid; mp $127-128{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta$: $3.26(\mathrm{t}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 4.59(\mathrm{t}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.99(\mathrm{~d}, J=12.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.18-7.32$ $(\mathrm{m}, 2 \mathrm{H}), 7.41-7.57(\mathrm{~m}, 6 \mathrm{H}), 7.62-7.72(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta: 29.6,71.3$, 112.4 (d, $J=12.2 \mathrm{~Hz}$), 124.8 (d, $J=10.1 \mathrm{~Hz}$), $125.1(\mathrm{~d}, J=14.7 \mathrm{~Hz}), 128.4$ (d, $J=12.0 \mathrm{~Hz}, \mathrm{C} \times 4), 131.7(\mathrm{~d}, J=2.6 \mathrm{~Hz}), 131.8(\mathrm{~d}, J=2.8 \mathrm{~Hz}, \mathrm{C} \times 2), 132.0(\mathrm{~d}$, $J=10.0 \mathrm{~Hz}, \mathrm{C} \times 4), 133.1,133.3(\mathrm{~s}, \mathrm{C} \times 2), 160.1,(\mathrm{~d}, J=17.2 \mathrm{~Hz}) ;{ }^{31} \mathrm{P}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta: 30.0$; EI-MS m / z (rel intensity): 320 ($\mathrm{M}^{+}, 54$); HRMS (FAB-MS) m / z calcd for $\mathrm{C}_{20} \mathrm{H}_{17} \mathrm{O}_{2} \mathrm{P}+\mathrm{H} 321.1044$, found 321.1039 .
17. Preparation of $2,2^{\prime}$-diphenylphosphinyl-1,1'-bi-5,6-dihydrobenzofuran ((\pm)-7): To the solution of phosphine oxide $\mathbf{6}(0.961 \mathrm{~g}, 3.00 \mathrm{mmol})$ in THF (24 mL) was added slowly t-BuLi in pentane ($2.1 \mathrm{~mL}, 3.34 \mathrm{mmol}, 1.59 \mathrm{M}$) at $-80^{\circ} \mathrm{C}$ for 10 min under an Ar atmosphere. After the mixture was stirred for 3 h , ferric chloride $\left(\mathrm{FeCl}_{3}\right)(0.593 \mathrm{~g}, 3.60 \mathrm{mmol})$ in THF (2 mL) was added. After the mixture was stirred for 13 h at room temperature, it was concentrated under reduced pressure. The residue was added to 6 M HCl aq (10 mL) and chloroform. The organic layer was washed with 6 M NaOH aq (10 mL) and brine, dried over MgSO_{4}, and concentrated under reduced pressure. The residue was purified by silica gel chromatography (elution with chloroform/ methanol $=40 / 1$): $0.549 \mathrm{~g}, 0.86 \mathrm{mmol}, 57 \%$; white solid; $\mathrm{mp} 156-158{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta: 2.92-3.18(\mathrm{~m}, 4 \mathrm{H}), 3.78(\mathrm{dd}, J=8.7$ and $18.7 \mathrm{~Hz}, 2 \mathrm{H}), 4.17-4.28$ (m, 2H), 6.76 (dd, $J=7.6$ and $13.8 \mathrm{~Hz}, 2 \mathrm{H}$), 7.03 (dd, $J=2.6$ and $7.7 \mathrm{~Hz}, 2 \mathrm{H}$), $7.23-7.31(\mathrm{~m}, 4 \mathrm{H}), 7.32-7.51(\mathrm{~m}, 8 \mathrm{H}), 7.57-7.66(\mathrm{~m}, 4 \mathrm{H}), 7.68-7.76(\mathrm{~m}, 4 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta: 29.8(\mathrm{~s}, \mathrm{C} \times 2), 70.5(\mathrm{~s}, \mathrm{C} \times 2), 121.6(\mathrm{~d}, J=3.2 \mathrm{~Hz}, \mathrm{C} \times 2)$, $123.8(\mathrm{~d}, J=15.8 \mathrm{~Hz}, \mathrm{C} \times 2), 126.4(\mathrm{~d}, J=12.7 \mathrm{~Hz}, \mathrm{C} \times 2), 127.8(\mathrm{~d}, J=12.2 \mathrm{~Hz}$, $\mathrm{C} \times 8$) $, 130.2(\mathrm{~d} J=105.2 \mathrm{~Hz}, \mathrm{C} \times 2), 130.3(\mathrm{~d}, J=2.6 \mathrm{~Hz}, \mathrm{C} \times 2), 130.9(\mathrm{~d}$,
$J=9.7 \mathrm{~Hz}, \mathrm{C} \times 4), 132.2(\mathrm{~d}, J=9.7 \mathrm{~Hz}, \mathrm{C} \times 4), 132.3(\mathrm{~d}, J=10.0 \mathrm{~Hz}, \mathrm{C} \times 4), 133.9$ (d, $J=35.5 \mathrm{~Hz}, \mathrm{C} \times 2$), 135.3 ($\mathrm{d}, J=36.2 \mathrm{~Hz}, \mathrm{C} \times 2$), $158.7(\mathrm{~d}, J=15.2 \mathrm{~Hz}, \mathrm{C} \times 2$); ${ }^{31} \mathrm{P}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta: 29.9$; FAB-MS m / z (rel intensity): $639\left(\mathrm{M}^{+}+1,14\right)$; HRMS (FAB-MS) m / z calcd for $\mathrm{C}_{40} \mathrm{H}_{32} \mathrm{O}_{4} \mathrm{P}_{2}+\mathrm{H} 639.1854$, found 639.1886.
18. Preparation of (\pm)-2,2'-diphenylphosphino-1,1'-bi-5,6-dihydrobenzofuran ((\pm)BICMAP, (\pm)-1): To a mixture of phosphine oxide (\pm)-7 $(232.5 \mathrm{mg}$, 0.364 mmol) and triethylamine ($1.82 \mathrm{~mL}, 13.1 \mathrm{mmol}$) in m-xylene (4.9 mL) was added trichlorosilane ($1.10 \mathrm{~mL}, 10.9 \mathrm{mmol}$) at $0^{\circ} \mathrm{C}$ under an Ar atmosphere. The reaction mixture was stirred for 6 h at $110^{\circ} \mathrm{C}$. After being cooled to room temperature, the mixture was quenched with 6 M NaOH aq $(10 \mathrm{~mL})$ and diluted with chloroform and water. The organic layer was dried over MgSO_{4}, and concentrated under reduced pressure. The residue was purified by silica gel chromatography (elution with n-hexane/ethyl acetate $=10 / 1$): $116.7 \mathrm{mg}, 0.192 \mathrm{mmol}, 53 \%$; white solid; $\mathrm{mp} 229-231^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta: 2.90-3.04(\mathrm{~m}, 2 \mathrm{H}), 3.06-3.22(\mathrm{~m}, 2 \mathrm{H}), 3.74(\mathrm{dd}, J=8.8$ and $18.7 \mathrm{~Hz}, 2 \mathrm{H}), 4.24-4.36(\mathrm{~m}, 2 \mathrm{H}), 6.60(\mathrm{dt}, J=1.7$ and $7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.08(\mathrm{~d}$, $J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.13-7.34(\mathrm{~m}, 20 \mathrm{H}) ;{ }^{13} \mathrm{CNMR}\left(\mathrm{CDCl}_{3}\right) \delta: 29.8(\mathrm{~s}, \mathrm{C} \times 2), 70.7(\mathrm{~s}$, $\mathrm{C} \times 2$), $124.0(\mathrm{t}, J=2.2 \mathrm{~Hz}, \mathrm{C} \times 4), 124.7(\mathrm{~s}, \mathrm{C} \times 2), 126.7(\mathrm{~s}, \mathrm{C} \times 2), 127.8(\mathrm{~d}$, $J=1.2 \mathrm{~Hz}, \mathrm{C} \times 2), 127.9(\mathrm{t}, J=3.5 \mathrm{~Hz}, \mathrm{C} \times 4), 128.0(\mathrm{~s}, \mathrm{C} \times 2), 128.1(\mathrm{t}, J=3.1 \mathrm{~Hz}$, $\mathrm{C} \times 4), 133.3(\mathrm{t}, J=10.3 \mathrm{~Hz}, \mathrm{C} \times 4), 134.0(\mathrm{t}, J=10.5 \mathrm{~Hz}, \mathrm{C} \times 4), 137.3(\mathrm{dd}, J=3.6$, $4.6 \mathrm{~Hz}, \mathrm{C} \times 2$), $137.7(\mathrm{dd}, J=5.4$ and $6.9 \mathrm{~Hz}, \mathrm{C} \times 2), 138.6(\mathrm{dd}, J=6.2$ and 7.3 Hz , $\mathrm{C} \times 2)$, $158.6(\mathrm{t}, \mathrm{J}=6.4 \mathrm{~Hz}, \mathrm{C} \times 2) ;{ }^{31} \mathrm{P}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta:-13.0$; EI-MS $\mathrm{m} / \mathrm{z}(\mathrm{rel}$ intensity): $606\left(\mathrm{M}^{+}, 0.08\right)$; HRMS (FAB-MS) m / z calcd for $\mathrm{C}_{40} \mathrm{H}_{32} \mathrm{O}_{2} \mathrm{P}_{2}+\mathrm{H}$ 607.1956, found 607.1953; HPLC: Daicel CHIRALPAK ${ }^{\circledR}$ IA ($0.46 \phi \times 25 \mathrm{~cm}$, UV 254 nm , hexane/ethanol = 97: 3, $0.3 \mathrm{~mL} / \mathrm{min}), t_{\mathrm{R}}=22.3\left(\mathrm{CD}: \lambda_{\text {ext }}(\Delta \varepsilon) 254(-)\right)$ and $25.9 \mathrm{~min}\left(\mathrm{CD}: \lambda_{\text {ext }}(\Delta \varepsilon) 254(+)\right.$); X-ray diffraction analysis data of (\pm)-1. Colorless prismatic crystals from hexane $/ \mathrm{CHCl}_{3}$, orthorhombic space group Pnc2, $a=12.1145(12) \AA, b=14.5546(15) ~ \AA, c=8.9488(9) \AA, \alpha=90^{\circ}, \beta=90^{\circ}$, $\gamma=90^{\circ}, V=1577.9(3) \AA^{3}, Z=4, \rho=1.277 \mathrm{~g} / \mathrm{cm}^{3}, \mu(\mathrm{Mo} \mathrm{K} \alpha)=1.73 \mathrm{~cm}^{-1}$. The structure was solved by the direct method of full-matrix least-squares, where the final R and $R w$ were 0.0338 and 0.0863 for 2118 reflections.
19. Optical resolution of (\pm)-BICMAP ($(\pm)-\mathbf{1})$: Chiral HPLC was carried out with a Daicel CHIRALPAK ${ }^{\circledR}$ IA column ($10 \mathrm{~mm} f \times 250 \mathrm{~mm}$) with hexane/ ethanol $=98: 2$ eluent. A solution of 2.9 mg of $(\pm)-\mathbf{1}$ in 2 mL of hexane was injected for each batch with flow rate of $0.8 \mathrm{~mL} / \mathrm{min}$. Enantiomers were eluted at 45.5 and 51.0 min : (+)-1; $0.79 \mathrm{mg}, 27 \%$; $>99 \%$ ee; $[\alpha]_{\mathrm{D}}^{20}+38(c 0.0275, \mathrm{EtOH})$; HPLC (Daicel CHIRALPAK ${ }^{\circledR}$ IA, $0.46 \phi \times 25 \mathrm{~cm}$, UV 254 nm), $t_{\mathrm{R}}=21.0 \mathrm{~min}$ (hexane/ethanol = 97:3, $0.3 \mathrm{~mL} / \mathrm{min}$) (CD: $\left.\lambda_{\text {ext }}(\Delta \varepsilon) 254(-)\right) ;(-)-1: 0.87 \mathrm{mg}$, 30%; 98.6% ee; $[\alpha]_{D}^{20}-37$ (c 0.0230, EtOH); HPLC (Daicel CHIRALPAK ${ }^{\circledR}$ IA, 0.46ϕ $\times 25 \mathrm{~cm}, \mathrm{UV} 254 \mathrm{~nm}), t_{\mathrm{R}}=23.5 \mathrm{~min}($ hexane $/$ ethanol $=97: 3,0.3 \mathrm{~mL} / \mathrm{min})(C D:$ $\left.\lambda_{\text {ext }}(\Delta \varepsilon) 254(+)\right)$.
20. General procedure for the palladium-catalyzed Suzuki-Miyaura reaction: To a test tube, arylchloride $8(0.20 \mathrm{mmol})$, arylboronic acid $9(0.30 \mathrm{mmol}), \mathrm{Pd}_{2}(\mathrm{dba})_{3}$ $(0.005 \mathrm{mmol}, 4.6 \mathrm{mg})$, ligand (\pm) $\mathbf{- 1}(0.015 \mathrm{mmol}, 9.1 \mathrm{mg}), \mathrm{Cs}_{2} \mathrm{CO}_{3}(0.40 \mathrm{mmol}$, 130.3 mg) and dioxane (0.60 mL) were added under an Ar atmosphere. The mixture was stirred at $80^{\circ} \mathrm{C}$. After 24 or 48 h , the reaction mixture was diluted with ethyl acetate and water. The organic layer was washed with brine and dried over MgSO_{4}. The filtrate was concentrated with a rotary evaporator and the residue was purified by column chromatography (elution with n-hexane/ ethyl acetate $=100-20 / 1$). All prepared compounds $\mathbf{1 0}$ were known and identified by ${ }^{1} \mathrm{H}$ NMR, ${ }^{13} \mathrm{C}$ NMR, and MS.
21. General procedure for the palladium-catalyzed Hartwig-Buchwald amination: To a test tube, arylbromide $\mathbf{1 1}(0.25 \mathrm{mmol})$, aniline $12(0.3 \mathrm{mmol}), \mathrm{Pd}_{2}(\mathrm{dba})_{3}$ $(0.0025 \mathrm{mmol}, \quad 2.3 \mathrm{mg}), \quad$ ligand $(\pm)-\mathbf{1} \quad(0.0075 \mathrm{mmol}, \quad 4.6 \mathrm{mg}), \quad \mathrm{Cs}_{2} \mathrm{CO}_{3}$ $(0.35 \mathrm{mmol}, 114.1 \mathrm{mg})$ and $\mathrm{PhMe}(1.0 \mathrm{~mL})$ were added under an Ar atmosphere. The mixture was stirred at $100^{\circ} \mathrm{C}$. After 18 h , the reaction mixture was diluted with ethyl acetate and water. The organic layer was washed with brine and dried over MgSO_{4}. The filtrate was concentrated with a rotary evaporator and the residue was purified by column chromatography (elution with n-hexane/ethyl acetate $=6: 1$). All prepared compounds 13 were known and identified by ${ }^{1} \mathrm{H}$ NMR, ${ }^{13} \mathrm{C}$ NMR, and MS.
22. Preparation of palladium complex $(\pm)-14$. To a solution of $\mathrm{PdCl}_{2}(\mathrm{MeCN})_{2}$ $(7.78 \mathrm{mg}, 0.03 \mathrm{mmol})$ in a $\mathrm{CHCl}_{3}(2.0 \mathrm{~mL})$ was added $(\pm)-\mathbf{1}(18.2 \mathrm{~g}$, $0.03 \mathrm{mmol})$ in a $\mathrm{CHCl}_{3}(2.0 \mathrm{~mL})$ at room temperature and stirred for 2 h . The reaction mixture was evaporated under reduced pressure. The residue was purified by silica gel chromatography (elution with $\mathrm{CHCl}_{3} / \mathrm{MeOH}=20: 1$): $25.5 \mathrm{mg}, 0.0282 \mathrm{mmol}, 94 \%$; yellow solid; $\mathrm{mp} 258-259{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta$: $2.71-2.87(\mathrm{~m}, 2 \mathrm{H}), 2.93-3.09(\mathrm{~m}, 2 \mathrm{H}), 4.31-4.51(\mathrm{~m}, 4 \mathrm{H}), 6.45(\mathrm{dd}, \mathrm{J}=7.8$ and $11.9 \mathrm{~Hz}, 2 \mathrm{H}), 6.72(\mathrm{dd}, J=1.9$ and $7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.27-7.48(\mathrm{~m}, 12 \mathrm{H}), 7.63-7.75$ $(\mathrm{m}, 4 \mathrm{H}), 7.87-8.08(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta: 29.4(\mathrm{~s}, \mathrm{C} \times 2), 71.2(\mathrm{~s}, \mathrm{C} \times 2)$, $118.6(\mathrm{dd}, J=4.0,10.4 \mathrm{~Hz}, \mathrm{C} \times 4), 124.6(\mathrm{~d}, J=53.9, \mathrm{C} \times 2), 124.9(\mathrm{~d}, J=12.3 \mathrm{~Hz}$, $\mathrm{C} \times 2$), $126.6(\mathrm{~d}, J=4.4 \mathrm{~Hz}, \mathrm{C} \times 2), 127.8(\mathrm{dd}, J=11.7,29.3 \mathrm{~Hz}, \mathrm{C} \times 8), 128.6(\mathrm{~d}$, $J=5.4 \mathrm{~Hz}, \mathrm{C} \times 2), 129.9(\mathrm{~d}, J=62.1 \mathrm{~Hz}, \mathrm{C} \times 2), 130.8(\mathrm{~d}, J=2.9 \mathrm{~Hz}, \mathrm{C} \times 2), 131.2$ (d, $J=2.1 \mathrm{~Hz}, \mathrm{C} \times 2$), $135.0(\mathrm{~d}, J=10.4 \mathrm{~Hz}, \mathrm{C} \times 4), 135.6(\mathrm{~s}, \mathrm{C} \times 2), 135.8(\mathrm{~s}$, $\mathrm{C} \times 2$), $158.6\left(\mathrm{dd}, J=1.0\right.$ and $12.3 \mathrm{~Hz}, \mathrm{C} \times 2$); ${ }^{31} \mathrm{P}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta: 26.9$; FAB-MS m / z (rel intensity) $747\left([\mathrm{M}-\mathrm{Cl}]^{+}, 5\right)$; HRMS (FAB-MS) m / z calcd for $\mathrm{C}_{40} \mathrm{H}_{32} \mathrm{O}_{2} \mathrm{ClP}_{2} \mathrm{Pd} 747.0601$, found 747.0557 ; X-ray diffraction analysis data of 14 (Fig. 2): Yellow plate crystals from hexane/ $\mathrm{CHCl}_{3}, \mathrm{C}_{40} \mathrm{H}_{32} \mathrm{O}_{2} \mathrm{Cl}_{2} \mathrm{P}_{2} \mathrm{Pd} \cdot \mathrm{CHCl}_{3}$, monoclinic space group $P 2_{1} / n, \quad a=11.5010(7) \AA, \quad b=19.5208(12) \AA$, $c=16.6287(10) \AA, \quad \alpha=90^{\circ}, \quad \beta=92.8320(10)^{\circ}, \gamma=90^{\circ}, V=3728.7(4) \AA^{3}, \quad Z=4$, $\rho=1.609 \mathrm{~g} / \mathrm{cm}^{3}, \mu(\mathrm{Mo} K \alpha)=9.79 \mathrm{~cm}^{-1}$. The structure was solved by the direct method of full-matrix least-squares, where the final R and $R w$ were 0.0367 and 0.0837 for 8391 reflections.
23. Mikami, K.; Aikawa, K.; Kainuma, S.; Kawakami, Y.; Saito, T.; Sayo, N.; Kumonayashi, H. Tetrahedron: Asymmetry 2004, 15, 3885.

[^0]: * Corresponding author. Tel.: +81 43290 3385; fax: +81 432903401.

 E-mail address: tmino@faculty.chiba-u.jp (T. Mino).

[^1]: ${ }^{\text {a }}$ The reactions were carried out on 0.20 mmol scale of $\mathbf{8}$ with 1.5 equiv of $\mathbf{9}$ and 2.0 equiv of $\mathrm{Cs}_{2} \mathrm{CO}_{3}$ in the presence of $\mathrm{Pd}_{2}(\mathrm{dba})_{3}(2.5 \mathrm{~mol} \%$) and ligand $(\pm)-\mathbf{1}$ $(7.5 \mathrm{~mol} \%)$ in dioxane $(0.6 \mathrm{~mL})$ at $80^{\circ} \mathrm{C}$ under Ar .
 ${ }^{\mathrm{b}}$ Isolated yields.

